viernes, 22 de marzo de 2019

Pi (Tercera parte)

Recordad de la anterior entrada del reto:
Suma de Leibniz
Suma de Nilakantha

En la siguiente tabla podéis ver cómo van evolucionando las sumas anteriores según vamos añadiendo más números (en amarillo las cinco que os mandé como reto). Yo (mi ordenador más bien) he seguido sumando hasta los 30000 números. Por cierto, la segunda se llama suma de Nilakantha).

 El valor real es = 3’1415926535897932384...

Vemos que hay una gran diferencia entre las dos sumas. Cierto que las dos se van acercando más al valor de p cuantos más números sumamos, pero parece claro que una es mucho más rápida que la otra. Por ejemplo, al sumar 30000 números con la suma de Leibniz sabemos que p está entre 3'14156 y 3'14163, es decir, tenemos sólo 3 cifras exactas de p; con la de Nilakantha llegamos hasta 3’141592653589, 12 cifras exactas de p.

Y ahí precisamente están las dos claves que marcaron (y siguen marcando) la carrera por conseguir cifras decimales de p:

1) Hay que utilizar sumas que se acerquen lo más rápido posible al verdadero valor de  p. En la actualidad se emplea una en la que cada vez que sumamos un número conseguimos 14 decimales exactos de p. Aquí nos lo cuentan:


2) Mi ordenador habrá tardado una fracción de segundo en hacer las cuentas. Para intentar batir el record de cifras de p se utilizan potentes ordenadores.

Vamos a ver algunos momentos importantes en la "Carrera de  p":

- La mente más brillante en la historia de la Humanidad, Isaac Newton, dijo: "La naturaleza se reduce a un número: p. Quien descubra el misterio de comprenderá el pensamiento de Dios", y tal vez por eso pasó unas cuantas tardes haciendo cuentas y calculó 15 decimales exactos... para lamentarse a continuación por haber perdido el tiempo haciendo cuentecitas inútiles.

- El aficionado a las matemáticas William Shanks dedicó casi 20 años de su vida a hacer cuentas para calcular 707 cifras decimales exactas de p... o eso creía: 70 años después, en 1944, usando una calculadora mecánica, se comprobó que "sólo" eran correctas hasta la 527.

- Una figura especial en el cálculo de las cifras de p es el portento indio Srinivasa Ramanujan, que encontró sumas de números que se acercaban muy rápido  al valor de (el algoritmo de Chudnovsky se basa en un descubrimiento suyo). Os dejo una de sus genialidades (a ver si sois capaces de hacer bien la cuenta -con calculadora, claro-):

- Con la llegada de los ordenadores la carrera quedó en manos de los informáticos. Precisamente la semana pasada se batió el récord llegando a más de 31 billones de cifras. Para ello la informática japonesa Emma Haruka Iwao ejecutó el programa y-cruncher en 25 ordenadores durante 121 días. Escritas seguidas en el tamaño que estáis leyendo darían más de 150 vueltas a la Tierra.


Dos cositas para terminar:

- Sí, es una gran pérdida de tiempo y de electricidad tener 25 potentes máquinas dedicadas 121 días a hacer algo que no sirve para nada. Afortunadamente los ordenadores se emplean casi siempre para cosas mucho más importantes. Os enlazo un vídeo muy interesante:


p también inspira a los "poetas":

Soy y seré a todos definible
mi nombre tengo que daros
cociente diametral siempre inmedible
soy de los redondos aros.

¿Feo? Bueno, eso es porque la gracia está en que al contar las letras de cada palabra obtenemos las 20 primeras cifras decimales de p. 

Reto III de pTenéis que escribir algo con sentido de entre 20 y 30 palabras (a ver si os sale poético, sabio y/o gracioso). El plazo termina el próximo jueves 4 de marzo.


Aunque son de mi época supongo que los conocéis:


Por si os sirve de ayuda aquí os enlazo:


¡Superad esto!


Uffffff, yo lo odiaba, ¡qué aburrido era! (Pero acabo de ver este vídeo y me he desternillado de risa de lo malo que es):


No hay comentarios :

Publicar un comentario